Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Probabilistic Analysis for Maximizing the Grid Integration of Wind Power Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de Magalhaes Carvalho, L. ; Inst. for Syst. & Comput. Eng. of Porto Technol. & Sci, INESC TEC (formerly INESC Porto), Porto, Portugal ; da Rosa, M.A. ; Martins Leite da Silva, A. ; Miranda, V.

This paper presents a sequential Monte Carlo simulation algorithm that can simultaneously assess composite system adequacy and detect wind power curtailment events. A simple procedure at the end of the state evaluation stage is proposed to categorize wind power curtailment events according to their cause. Furthermore, the dual variables of the DC optimal power flow procedure are used to identify which transmission circuits are restricting the use of the total wind power available. In the first set of experiments, the composite system adequacy is assessed, incorporating different generation technologies. This is conducted to clarify the usual comparisons made between wind and thermal technologies which, in fact, depend on the performance measure selected. A second set of experiments considering several wind penetration scenarios is also performed to determine the operational rules or system components responsible for the largest amount of wind energy curtailed. The experiments are carried out on configurations of the IEEE-RTS 79 power system.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 4 )