By Topic

In Silico Studies of Magnetic Microparticle Aggregations in Fluid Environments for MRI-Guided Drug Delivery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vartholomeos, P. ; Cardiac Surg. Bioeng. Lab., Children's Hosp. Boston, Boston, MA, USA ; Mavroidis, C.

A computational platform has been developed to perform simulation, visualization, and postprocessing analysis of the aggregation process of magnetic particles within a fluid environment such as small arteries and arterioles or fluid-filled cavities of the human body. The mathematical models needed to describe the physics of the system are presented in detail and also computational algorithms needed for efficient computation of these models are described. A number of simulation results demonstrate the simulation capabilities of the platform and preliminary experimental results validate simulation predictions. The platform can be used to design optimal strategies for magnetic steering and magnetic targeting of drug-loaded magnetic microparticles.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 11 )