Cart (Loading....) | Create Account
Close category search window
 

A Closed-Form Representation of Time-Domain Far Fields Based on Physical Optics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiao Zhou ; Dept. of Radio Eng., Southeast Univ., Nanjing, China ; Cui, Tie Jun

In the conventional time-domain physical optics (PO) method, the far fields scattered by a metallic plate S of arbitrary shape have been given by a surface integral. However, the numerical evaluation of such a surface integral is time-consuming, which becomes the crux of time-domain PO technique. In this letter, a time-domain PO integral is formulated under the incidence of plane waves and observation in the far-field region. Then, the surface integral over S is reduced to a line integral around the boundary of S . When S is a polygon, the line integral is further reduced to a closed-form expression, which is very similar to the well-known Gordon formula in the evaluation of PO integral in the frequency domain. When S is arbitrarily shaped, the integral evaluation is also efficient once the polygon mesh is given. The efficiency and accuracy of the closed-form expression in the time domain are demonstrated through a number of numerical examples.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:11 )

Date of Publication:

2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.