By Topic

A 16-configuration-context dynamic optically reconfigurable gate array with a dependable laser array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yoza, T. ; Electr. & Electron. Eng., Shizuoka Univ., Shizuoka, Japan ; Watanabe, M.

Demand is increasing daily for a large-gate-count robust VLSI chip that is useful in a radiation-rich space environment. Optically reconfigurable gate arrays (ORGAs) have been developed to realize a much larger virtual gate count than those of current VLSI chips. The ORGA architecture is extremely robust for many failure modes caused by high-energy charged particles. Among such developments, dynamic optically reconfigurable gate arrays (DORGAs) have been developed to realize a high-gate-density VLSI using a photodiode memory architecture. Unfortunately, the DORGA architecture is more sensitive to the unallowable turn-off failure mode of a laser array. Therefore, this paper presents a 16-configuration-context dynamic optically reconfigurable gate array with a dependable laser array.

Published in:

Adaptive Hardware and Systems (AHS), 2012 NASA/ESA Conference on

Date of Conference:

25-28 June 2012