System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Dynamic Frequency Control Support by Energy Storage to Reduce the Impact of Wind and Solar Generation on Isolated Power System's Inertia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Delille, G. ; Dept. Econ. & Tech. Anal. of Energy Syst. (EFESE), EDF R&D, Clamart, France ; Francois, B. ; Malarange, G.

In electrical islands, frequency excursions are sizeable and automatic load shedding is often required in response to disturbances. Moreover, the displacement of conventional generation with wind and solar plants, which usually do not provide inertial response, further weakens these power systems. Fast-acting storage, by injecting power within instants after the loss of a generating unit, can back up conventional generation assets during the activation of their primary reserve. This paper relies on dynamic simulations to study the provision of such a dynamic frequency control support by energy storage systems in the French island of Guadeloupe with large shares of wind or solar generation. The results show that fast-acting storage, by acting as a synthetic inertia, can mitigate the impact of these sources on the dynamic performance of the studied island grid in the case of a major generation outage. The other concerns raised by renewables (e.g., variability, forecast accuracy, low voltage ride-through, etc.) have not been addressed within this project.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:3 ,  Issue: 4 )