By Topic

Comparison of Spectral Characteristics Between China HJ1-CCD and Landsat 5 TM Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Guoqing Li ; State Key Lab. of Earth Surface Processes & Resource Ecology, Beijing Normal Univ., Beijing, China ; Xiaobing Li ; Guoming Li ; Wanyu Wen
more authors

The Landsat 5 mission is in jeopardy. Therefore, the United States Geological Survey (USGS) is exploring ways to alleviate a data gap if both Landsat 5 and 7 missions fail prior to the planned launch of Landsat 8 (known as the Landsat Data Continuity Mission) in 2013 [Randy, 2012]. Using the Chinese HJ1-CCD remote sensing data, analyses were performed on the spectral signature of these two different sensors to investigate the substitution of existing sensors for Landsat 5 TM in certain fields of research. In particular, a comparison was made between Landsat 5 TM and the HJ1-CCD in terms of orbital parameters, imaging features and spectral response characteristics, among other characteristics. Thereafter, a comparative analysis was performed on the “at-satellite” reflectance of nine pairs of remote sensing images of different land cover in China, and a mutual quantitative relationship was established. The results indicate that Landsat 5 TM and HJ1-CCD have similar orbital parameters, and the latter has a higher time resolution with advantages in its breadth and the quantity of sensors, although both have the same spatial resolution. Regarding the imaging and spectral response characteristics, although the at-satellite reflectance of HJ1-CCD is different from that of Landsat 5 TM for red, green, blue and near infra-red bands, there is still a broad correlation between HJ1-CCD and Landsat 5 TM, and the coefficient of determination approaches unity. Therefore, a mutual complementation and substitution of the at-satellite reflectance between HJ1-CCD and Landsat 5 TM images is feasible.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 1 )