By Topic

Scalable Critical-Path Based Performance Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bohme, D. ; German Res. Sch. for Simulation Sci., Aachen, Germany ; Wolf, F. ; de Supinski, B.R. ; Schulz, M.
more authors

The critical path, which describes the longest execution sequence without wait states in a parallel program, identifies the activities that determine the overall program runtime. Combining knowledge of the critical path with traditional parallel profiles, we have defined a set of compact performance indicators that help answer a variety of important performance-analysis questions, such as identifying load imbalance, quantifying the impact of imbalance on runtime, and characterizing resource consumption. By replaying event traces in parallel, we can calculate these performance indicators in a highly scalable way, making them a suitable analysis instrument for massively parallel programs with thousands of processes. Case studies with real-world parallel applications confirm that - in comparison to traditional profiles - our indicators provide enhanced insight into program behavior, especially when evaluating partitioning schemes of MPMD programs.

Published in:

Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012