By Topic

Efficient Quality Threshold Clustering for Parallel Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anthony Danalis ; Univ. of Tennessee, Knoxville, TN, USA ; Collin McCurdy ; Jeffrey S. Vetter

Quality Threshold Clustering (QTC) is an algorithm for partitioning data, in fields such as biology, where clustering of large data-sets can aid scientific discovery. Unlike other clustering algorithms, QTC does not require knowing the number of clusters a priori, however, its perceived need for high computing power often makes it an unattractive choice. This paper presents a thorough study of QTC. We analyze the worst case complexity of the algorithm and discuss methods to reduce it by trading memory for computation. We also demonstrate how the expected running time of QTC is affected by the structure of the input data. We describe how QTC can be parallelized, and discuss implementation details of our thread-parallel, GPU, and distributed memory implementations of the algorithm. We demonstrate the efficiency of our implementations through experimental data. We show how data sets with tens of thousands of elements can be clustered in a matter of minutes in a modern GPU, and seconds in a small scale cluster of multi-core CPUs, or multiple GPUs. Finally, we discuss how user selected parameters, as well as algorithmic and implementation choices, affect performance.

Published in:

Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012