Cart (Loading....) | Create Account
Close category search window
 

HierKNEM: An Adaptive Framework for Kernel-Assisted and Topology-Aware Collective Communications on Many-core Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Teng Ma ; EECS, Univ. of Tennessee, Knoxville, TN, USA ; Bosilca, G. ; Bouteiller, A. ; Dongarra, J.J.

Multicore Clusters, which have become the most prominent form of High Performance Computing (HPC) systems, challenge the performance of MPI applications with non uniform memory accesses and shared cache hierarchies. Recent advances in MPI collective communications have alleviated the performance issue exposed by deep memory hierarchies by carefully considering the mapping between the collective topology and the core distance, as well as the use of single-copy kernel assisted mechanisms. However, on distributed environments, a single level approach cannot encompass the extreme variations not only in bandwidth and latency capabilities, but also in the aptitude to support duplex communications or operate multiple concurrent copies simultaneously. This calls for a collaborative approach between multiple layers of collective algorithms, dedicating to extracting the maximum degree of parallelism from the collective algorithm by consolidating the intra- and inter-node communications. In this work, we present Hier KNEM a kernel-assisted topology-aware collective framework, and how this framework orchestrates the collaboration between multiple layers of collective algorithms. The resulting scheme enables perfect overlap of intra- and inter-node communications. We demonstrated experimentally, by considering three of the most used collective operations (Broadcast, All gather and Reduction), that 1) this approach is immune to modifications of the underlying process-core binding, 2) it outperforms state-of-art MPI libraries (Open MPI, MPICH2 and MVAPICH2) demonstrating up to a 30x speedup for synthetic benchmarks, and up to a 3x acceleration for a parallel graph application (ASP), 3) it furthermore demonstrates a linear speedup with the increase of the number of cores per node, a paramount requirement for scalability on future many-core hardware.

Published in:

Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.