By Topic

MATE-CG: A Map Reduce-Like Framework for Accelerating Data-Intensive Computations on Heterogeneous Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Jiang ; Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA ; Agrawal, G.

Clusters of GPUs have rapidly emerged as the means for achieving extreme-scale, cost-effective, and powerefficient high performance computing. At the same time, high level APIs like map-reduce are being used for developing several types of high-end and/or data-intensive applications. Map-reduce, originally developed for data processing applications, has been successfully used for many classes of applications that involve a significant amount of computations, such as machine learning, image processing, and data mining applications. Because such applications can be accelerated using GPUs (and other accelerators), there has been interest in supporting map-reduce-like APIs on GPUs. However, while the use of map-reduce for a single GPU has been studied, developing map-reduce-like models for programming a heterogeneous CPU-GPU cluster remains an open challenge. This paper presents the MATE-CG system, which is a map reduce-like framework based on the generalized reduction API. We develop support for enabling scalable and efficient implementation of data-intensive applications in a heterogeneous cluster of multi-core CPUs and many-core GPUs. Our contributions are three folds: 1) we port the generalized reduction model on clusters of modern GPUs with a map-reduce-like API, dealing with very large datasets, 2) we further propose three schemes to better utilize the computing power of CPUs and/or GPUs and develop an auto-tuning strategy to achieve the best-possible heterogeneous configuration for iterative applications, 3) we show how analytical models can be used to optimize important parameters in our system. We evaluate our system using three representative data intensive applications and report results on a heterogeneous cluster of 128 CPU cores and 16 GPUs (7168 GPU cores). We show an average speedup of 87× on this cluster over execution with 2 CPU-cores. Our applications also achieve an average improvement of 25% by using CPU cores and GPUs simultaneously, over t- e best performance achieved from using only one of the types of resources in the cluster.

Published in:

Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012