By Topic

WATS: Workload-Aware Task Scheduling in Asymmetric Multi-core Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Quan Chen ; Dept. of Comput. Sci. & Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Yawen Chen ; Zhiyi Huang ; Minyi Guo

Asymmetric Multi-Core (AMC) architectures have shown high performance as well as power efficiency. However, current parallel programming environments do not perform well on AMC due to their assumption that all cores are symmetric and provide equal performance. Their random task scheduling policies, such as task-stealing, can result in unbalanced workloads in AMC and severely degrade the performance of parallel applications. To balance the workloads of parallel applications in AMC, this paper proposes a Workload-Aware Task Scheduling (WATS) scheme that adopts history-based task allocation and preference-based task stealing. The history-based task allocation is based on a near-optimal, static task allocation using the historical statistics collected during the execution of a parallel application. The preference-based task stealing, which steals tasks based on a preference list, can dynamically adjust the workloads in AMC if the task allocation is less optimal due to approximation in the history-based task allocation. Experimental results show that WATS can improve the performance of CPU-bound applications up to 82.7% compared with the random task scheduling policies.

Published in:

Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International

Date of Conference:

21-25 May 2012