Cart (Loading....) | Create Account
Close category search window
 

An energy-aware bioinformatics application for assembling short reads in high performance computing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Warnke, J. ; Coll. of Inf. Sci. & Technol., Univ. of Nebraska at Omaha, Omaha, NE, USA ; Pawaskar, S. ; Ali, H.

Current biomedical technologies are producing massive amounts of data on an unprecedented scale. The increasing complexity and growth rate of biological data has made bioinformatics data processing and analysis a key and computationally intensive task. High performance computing (HPC) has been successfully applied to major bioinformatics applications to reduce computational burden. However, a naïve approach for developing parallel bioinformatics applications may achieve a high degree of parallelism while unnecessarily expending computational resources and consuming high levels of energy. As the wealth of biological data and associated computational burden continues to increase, there has become a need for the development of energy efficient computational approaches in the bioinformatics domain. To address this issue, we have developed an energy-aware scheduling (EAS) model to run computationally intensive applications that takes both deadline requirements and energy factors into consideration. An example of a computationally demanding process that would benefit from our scheduling model is the assembly of short sequencing reads produced by next generation sequencing technologies. Next generation sequencing produces a very large number of short DNA reads from a biological sample. Multiple overlapping fragments must be aligned and merged into long stretches of contiguous sequence before any useful information can be gathered. The assembly problem is extremely difficult due to the complex nature of underlying genome structure and inherent biological error present in current sequencing technologies. We apply our EAS model to a newly proposed assembly algorithm called Merge and Traverse, giving us the ability to generate speedup profiles. Our EAS model was also able to dynamically adjust the number of nodes needed to meet given deadlines for different sets of reads.

Published in:

High Performance Computing and Simulation (HPCS), 2012 International Conference on

Date of Conference:

2-6 July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.