Cart (Loading....) | Create Account
Close category search window

Random Edge-Local Complementation with Applications to Iterative Decoding of High-Density Parity-Check Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Knudsen, J.G. ; Dept. of Inf., Univ. of Bergen, Bergen, Norway ; Riera, C. ; Danielsen, L.E. ; Parker, M.G.
more authors

We describe the application of edge-local complementation (ELC) to a Tanner graph associated with a binary linear code, C. Various properties of ELC are described, mainly the special case of isomorphic ELC operations and the relationship to the automorphism group of the code, Aut(C), and the generalization of ELC to weight-bounding ELC (WB-ELC) operations under which the number of edges remains upper-bounded. ELC generates all systematic parity-check matrices (the orbit) of the code, so WB-ELC facilitates a restriction to low-weight matrices of this orbit. We propose using ELC and WB-ELC as a source of diversity, to improve iterative soft-input soft-output decoding of high-density parity-check (HDPC) codes, with the sum-product algorithm (SPA). A motivation of ELC-enhanced SPA decoding is locality; that diversity is achieved by local graph action, and is well-suited to the local actions that constitute the SPA and allows for parallel software implementation. Simulation data on the error-rate performance of the proposed SPA-ELC and SPA-WBELC iterative decoding algorithms is shown for several HDPC codes. A gain is reported over SPA decoding, and over a recently proposed algorithm to decode HDPC codes using permutations from Aut(C). ELC-enhanced decoding extends the scope of iterative decoding to codes with trivial Aut(C).

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 10 )

Date of Publication:

October 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.