By Topic

Land-Use Classification Using Taxi GPS Traces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gang Pan ; Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China ; Guande Qi ; Zhaohui Wu ; Daqing Zhang
more authors

Detailed land use, which is difficult to obtain, is an integral part of urban planning. Currently, GPS traces of vehicles are becoming readily available. It conveys human mobility and activity information, which can be closely related to the land use of a region. This paper discusses the potential use of taxi traces for urban land-use classification, particularly for recognizing the social function of urban land by using one year's trace data from 4000 taxis. First, we found that pick-up/set-down dynamics, extracted from taxi traces, exhibited clear patterns corresponding to the land-use classes of these regions. Second, with six features designed to characterize the pick-up/set-down pattern, land-use classes of regions could be recognized. Classification results using the best combination of features achieved a recognition accuracy of 95%. Third, the classification results also highlighted regions that changed land-use class from one to another, and such land-use class transition dynamics of regions revealed unusual real-world social events. Moreover, the pick-up/set-down dynamics could further reflect to what extent each region is used as a certain class.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )