By Topic

A game-theoretic approach for optimal time-of-use electricity pricing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng Yang ; Dept. of Electr. & Syst. Eng., Washington Univ. in St. Louis, St. Louis, MO, USA ; Gongguo Tang ; Nehorai, A.

Demand for electricity varies throughout the day, increasing the average cost of power supply. Time-of-use (TOU) pricing has been proposed as a demand-side management (DSM) method to influence user demands. In this paper, we describe a game-theoretic approach to optimize TOU pricing strategies (GT-TOU). We propose models of costs to utility companies arising from user demand fluctuations, and models of user satisfaction with the difference between the nominal demand and the actual consumption. We design utility functions for the company and the users, and obtain a Nash equilibrium using backward induction. In addition to a single-user-type scenario, we also consider a scenario with multiple types of users, each of whom responds differently to time-dependent prices. Numerical examples show that our method is effective in leveling the user demand by setting optimal TOU prices, potentially decreasing costs for the utility companies, and increasing user benefits. An increase in social welfare measure indicates improved market efficiency through TOU pricing.

Published in:

Power Systems, IEEE Transactions on  (Volume:28 ,  Issue: 2 )