By Topic

Classification of Endomicroscopic Images of the Lung Based on Random Subwindows and Extra-Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Desir, C. ; LITIS EA 4108, Université de Rouen, France ; Petitjean, C. ; Heutte, L. ; Salaun, M.
more authors

Recently, the in vivo imaging of pulmonary alveoli was made possible thanks to confocal microscopy. For these images, we wish to aid the clinician by developing a computer-aided diagnosis system, able to discriminate between healthy and pathological subjects. The lack of expertise currently available on these images has first led us to choose a generic approach, based on pixel-value description of randomly extracted subwindows and decision tree ensemble for classification (extra-trees). In order to deal with the great complexity of our images, we adapt this method by introducing a texture-based description of the subwindows, based on local binary patterns. We show through our experimental protocol that this adaptation is a promising way to classify fibered confocal fluorescence microscopy images. In addition, we introduce a rejection mechanism on the classifier output to prevent nondetection errors.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 9 )