By Topic

Impurity-Related Limitations of Next-Generation Industrial Silicon Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jan Schmidt ; Institute for Solar Energy Research Hamelin, D-31860 Emmerthal, Germany ; Bianca Lim ; Dominic Walter ; Karsten Bothe
more authors

We apply highly predictive 2-D device simulation to assess the impact of various impurities on the performance of next-generation industrial silicon solar cells. We show that the light-induced boron-oxygen recombination center limits the efficiency to 19.2% on standard Czochralski-grown silicon material. Curing by illumination at elevated temperature is shown to increase the efficiency limit by +1.5% absolute to 20.7%. In the second part of this paper, we examine the impact of the most important metallic impurities on the cell efficiency for p- and n-type cells. It is widely believed that solar cells on n-type silicon are less sensitive to metallic impurities. We show that this statement is not generally valid as it is merely based on the properties of Fe but does not account for the properties of Co, Cr, and Ni.

Published in:

IEEE Journal of Photovoltaics  (Volume:3 ,  Issue: 1 )