By Topic

Robust Background Subtraction Based on Perceptual Mixture-of-Gaussians with Dynamic Adaptation Speed

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haque, M. ; Gippsland Sch. of Inf. Technol., Monash Univ., Churchill, VIC, Australia ; Murshed, M.

In this paper, we propose a new background subtraction technique based on perceptual mixture-of-Gaussians (PMOG). Unlike numerous variants of the classical MOG based approach [1], which can ensure reliable detection result only in known operating environments through proper parameter tuning, PMOG shows superior detection performance across dynamic unconstrained scenarios without any tuning. This is due to PMOG's intrinsic capability of exploiting several perceptual characteristics of human visual system for better understanding of the operating environment to avoid blind reliance on statistical observations. Furthermore, the proposed technique dynamically varies the model adaptation speed, i.e., learning rate, based on observed scene statistics for faster adaptation of changed background and better persistency of detected foreground entities. Comprehensive experimental evaluation on a number of standard datasets validates the robustness of the technique compared to the state-of-the-art.

Published in:

Multimedia and Expo Workshops (ICMEW), 2012 IEEE International Conference on

Date of Conference:

9-13 July 2012