By Topic

Query by Humming by Using Locality Sensitive Hashing Based on Combination of Pitch and Note

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qiang Wang ; Pattern Recognition & Intell. Syst. Lab., Beijing Univ. of Posts & Telecommun., Beijing, China ; Zhiyuan Guo ; Gang Liu ; Jun Guo
more authors

Query by humming (QBH) is a technique that is used for content-based music information retrieval. It is a challenging unsolved problem due to humming errors. In this paper a novel retrieval method called note-based locality sensitive hashing (NLSH) is presented and it is combined with pitch-based locality sensitive hashing (PLSH) to screen candidate fragments. The method extracts PLSH and NLSH vectors from the database to construct two indexes. In the phase of retrieval, it automatically extracts vectors similar to the index construction and searches the indexes to obtain a list of candidates. Then recursive alignment (RA) is executed on these surviving candidates. Experiments are conducted on a database of 5,000 MIDI files with the 2010 MIREX-QBH query corpus. The results show by using the combination approach the relatively improvements of mean reciprocal rank are 29.7% (humming from anywhere) and 23.8% (humming from beginning), respectively, compared with the current state-of-the-art method.

Published in:

Multimedia and Expo Workshops (ICMEW), 2012 IEEE International Conference on

Date of Conference:

9-13 July 2012