By Topic

Supervised, Geometry-Aware Segmentation of 3D Mesh Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keisuke Bamba ; Univ. of Yamanashi, Yamanashi, Japan ; Ryutarou Ohbuchi

Segmentation of 3D model models has applications, e.g., in mesh editing and 3D model retrieval. Unsupervised, automatic segmentation of 3D models can be useful. However, some applications require user-guided, interactive segmentation that captures user intention. This paper presents a supervised, local-geometry aware segmentation algorithm for 3D mesh models. The algorithm segments manifold meshes based on interactive guidance from users. The method casts user-guided mesh segmentation as a semi-supervised learning problem that propagates segmentation labels given to a subset of faces to the unlabeled faces of a 3D model. The proposed algorithm employs Zhou's Manifold Ranking [18] algorithm, which takes both local and global consistency in high-dimensional feature space for the label propagation. Evaluation using a 3D model segmentation benchmark dataset has shown that the method is effective, although achieving interactivity for a large and complex mesh requires some work.

Published in:

Multimedia and Expo Workshops (ICMEW), 2012 IEEE International Conference on

Date of Conference:

9-13 July 2012