By Topic

SVD Filter Based Multiscale Approach for Image Quality Assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Saha, A. ; Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada ; Bhatnagar, G. ; Wu, Q.M.J.

Automatic assessment of image quality in accordance with the human visual system (HVS) finds application in various image processing tasks. In the last decade, a substantial proliferation in image quality assessment (IQA) based on structural similarity has been observed. The structural information estimation includes statistical values (mean, variance, and correlation), gradient information, Harris response and singular values. In this paper, we propose a multiscale image quality metric which exploits the properties of Singular Value Decomposition (SVD) to get approximate pyramid structure for its use in IQA. The proposed multiscale metric has been extensively evaluated in the LIVE database and CSIQ database. Experiments have been carried out on the effective number of scales used as well as on the effective proportion of different scales required for the metric. The proposed metric achieves competitive performance with the structural similarity based state-of-the-art methods.

Published in:

Multimedia and Expo Workshops (ICMEW), 2012 IEEE International Conference on

Date of Conference:

9-13 July 2012