Cart (Loading....) | Create Account
Close category search window
 

Multiple Description Analog Joint Source-Channel Coding to Exploit the Diversity in Parallel Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Erdozain, A. ; CEIT, Univ. of Navarra, San Sebastián, Spain ; Crespo, P.M. ; Beferull-Lozano, B.

The complexity and delay introduced by efficient digital coding strategies may be a barrier in some real-time communications. In this sense, these last years, joint source-channel coding schemes based on analog mappings have gained prominence precisely for their simplicity and their implicit low delay. In this work, analog mappings originally designed for point-to-point communications are adapted to the case of parallel channels by following the multiple description strategy traditionally used in source coding. In principle, the coding scheme is designed to transmit over parallel AWGN on-off channels, which are characterized by the possibility of having failures. We also show that our scheme performs satisfactorily over slow Rayleigh fading parallel channels.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.