By Topic

Primary frequency regulation by deloaded wind turbines using variable droop

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vidyanandan, K.V. ; Power Manage. Inst., NTPC Ltd., Noida, India ; Senroy, N.

This paper introduces a method to improve the primary frequency contribution of grid connected variable speed wind turbine generators (WTGs). Using their energy reserve margins, deloaded WTGs are controlled to provide relief to the grid during depressed frequency conditions. The frequency support from individual WTGs is regulated based on the available reserve, which depends on the prevailing wind velocities. By continuously adjusting the droop of the WTG in response to wind velocities, its primary frequency response is significantly improved in terms of reduced stresses on WTGs during low wind speeds. The impact of variable droop operation on two aspects of WTG operation is investigated-primary frequency contribution and smoothening power fluctuations caused due to changes in wind speed. Also highlighted is the usefulness of this control when adopted by wind farms.

Published in:

Power Systems, IEEE Transactions on  (Volume:28 ,  Issue: 2 )