Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

CMOS Neurotransmitter Microarray: 96-Channel Integrated Potentiostat With On-Die Microsensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nazari, M.H. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Mazhab-Jafari, H. ; Lian Leng ; Guenther, A.
more authors

A 8 × 12 array of integrated potentiostats for on-CMOS neurotransmitter imaging is presented. Each potentiostat channel measures bidirectional redox currents proportional to the concentration of a neurochemical. By combining the current-to-frequency and the single-slope analog-to-digital converter (ADC) architectures a total linear dynamic range of 95 dB is achieved. A 3.8 mm × 3.1 mm prototype fabricated in a 0.35 μm standard CMOS technology was integrated with flat and 3D on-die gold microelectrodes and an on-chip microfluidic network. It is experimentally validated in in-situ recording of neurotransmitter dopamine.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:7 ,  Issue: 3 )