By Topic

Accelerated Direct Solution of the Method-of-Moments Linear System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alex Heldring ; Dept. of Signal Process. & Telecommun., Univ. Politec. de Catalunya, Barcelona, Spain ; José Maria Tamayo ; Eduard Ubeda ; Juan M. Rius

This paper addresses the direct (noniterative) solution of the method-of-moments (MoM) linear system, accelerated through block-wise compression of the MoM impedance matrix. Efficient matrix block compression is achieved using the adaptive cross-approximation (ACA) algorithm and the truncated singular value decomposition (SVD) postcompression. Subsequently, a matrix decomposition is applied that preserves the compression and allows for fast solution by backsubstitution. Although not as fast as some iterative methods for very large problems, accelerated direct solution has several desirable features, including: few problem-dependent parameters; fixed time solution avoiding convergence problems; and high efficiency for multiple excitation problems [e.g., monostatic radar cross section (RCS)]. Emphasis in this paper is on the multiscale compressed block decomposition (MS-CBD) algorithm, introduced by Heldring , which is numerically compared to alternative fast direct methods. A new concise proof is given for the N2 computational complexity of the MS-CBD. Some numerical results are presented, in particular, a monostatic RCS computation involving 1 043 577 unknowns and 1000 incident field directions, and an application of the MS-CBD to the volume integral equation (VIE) for inhomogeneous dielectrics.

Published in:

Proceedings of the IEEE  (Volume:101 ,  Issue: 2 )