By Topic

A SPICE-based lumped parameter thermal model with geometrically distributed elements for electro-hydraulic actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Klaus Stadlbauer ; JKU HOERBIGER Research Institute for Smart Actuators, Linz, Austria ; Florian Poltschak ; David Rafetseder ; Wolfgang Amrhein

In highly exploited and integrated mechatronic systems the thermal design and management defines the maximum load case. The trend to move to higher power densities needs precise and reliable thermal models of electrical machines to determine the limits of new and thermally demanding use cases and/or gives design guidelines for future generations of the product. For the electro-hydraulic system investigated in this paper a mathematically lumped parameter model with geometrically distributed elements has been developed. The thermal properties of the elements are calculated with physical material properties according to their geometric sizes. This allows to implement a comfortable parameterized interface that facilitates an easy change of geometrical dimensions and material properties. Moreover sub-sections of the system can be grouped which allows modularized modeling - this possibility shows its strength when an electrical sub-system is combined with a hydraulic sub-system. Together with automated model generation the resulting SPICE model is well suited for parameterized optimization. The model applies to both transient and/or steady state temperature including the effects of heat radiation and air convection. Thus, fast and accurate calculation of the temperature distribution and heat flow is possible and has been validated by measurements on a test rig.

Published in:

Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012 International Symposium on

Date of Conference:

20-22 June 2012