Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A New Approach to Video-Based Traffic Surveillance Using Fuzzy Hybrid Information Inference Mechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bing-Fei Wu ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chih-Chung Kao ; Jhy-Hong Juang ; Yi-Shiun Huang

This study proposes a new approach to video-based traffic surveillance using a fuzzy hybrid information inference mechanism (FHIIM). The three major contributions of the proposed approach are background updating, vehicle detection with block-based segmentation, and vehicle tracking with error compensation. During background updating, small-range updating is adopted to overcome environmental changes under congested conditions. During vehicle detection, the proposed approach detects the vehicle candidates from the foreground image, and it resolves problems such as headlight effects. The tracking technique is employed to track vehicles in consecutive frames. First, the method detects edge features in congested scenes. Next, FHIIM is employed to determine the tracked vehicles. Finally, a method that compensates for error cases under congested conditions is applied to refine the tracking qualities. In our experiments, we tested scenarios both inside and outside the tunnel with three lanes. The results showed that the proposed system exhibits good performance under congested conditions.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )