By Topic

Isotropic Silicon Etching With \hbox {XeF}_{2} Gas for Wafer-Level Micromachining Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dehui Xu ; Sci. & Technol. on Microsyst. Lab., Shanghai Inst. of Microsyst. & Inf. Technol., Shanghai, China ; Bin Xiong ; Guoqiang Wu ; Yuchen Wang
more authors

Wafer-level isotropic etching of silicon with XeF2 gas has been investigated for microelectromechanical-system (MEMS) fabrication. Because of the large exposed silicon area in the wafer-level process, XeF2 gas diffusion in the wafer-level process is different from the chip-level process. The silicon etch rate for the wafer-level XeF2 process is much smaller than chip-level XeF2 etching. Additionally, the silicon etch rate drops off as the etching time increased. The aperture size effect is apparent in the wafer-level XeF2 processing. However, for etching windows with a large size, the aperture size effect will be minimized. Both vertical and lateral aperture size effects depend on the number of etch cycle. Although slight anisotropy is also observed, wafer-level XeF2 etching shows a better isotropy than the chip-level process. Compared with the chip-level process, wafer-level XeF2 etching shows a large etch rate for SiO2. The etch selectivity between silicon and SiO2 is lower than 1000:1. Based on the characteristics of XeF2 etching, the layout design rule for the MEMS device with XeF2 releasing is developed and demonstrated.

Published in:

Microelectromechanical Systems, Journal of  (Volume:21 ,  Issue: 6 )