By Topic

Parallel Streamline Placement for 2D Flow Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wenyao Zhang ; Beijing Institute of Technology, Beijing ; Yi Wang ; Jianfeng Zhan ; Beichen Liu
more authors

Parallel streamline placement is still an open problem in flow visualization. In this paper, we propose an innovative method to place streamlines in parallel for 2D flow fields. This method is based on our proposed concept of local tracing areas (LTAs). An LTA is defined as a subdomain enclosed by streamlines and/or field borders, where the tracing of streamlines are localized. Given a flow field, it is initialized as an LTA, which is later recursively partitioned into hierarchical LTAs. Streamlines are placed within different LTAs simultaneously and independently. At the same time, to control the density of streamlines, each streamline is associated with an isolation zone and a saturation zone, both of which are center aligned with the streamline but have different widths. None of streamlines can trace into isolation zones of others. And new streamlines are only seeded within valid seeding areas (VSAs) that are enclosed by saturation zones and/or field borders. To implement the parallel strategy and the density control, a cell-based modeling is devised to describe isolation zones and LTAs as well as saturation zones and VSAs. With the help of these cell-based models, a heuristic seeding strategy is proposed to seed streamlines within irregular LTAs, and a cell-marking technique is used to control the seeding and tracing of streamlines. Test results show that the placement method can achieve highly parallel performance on shared memory systems without losing the quality of placements.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:19 ,  Issue: 7 )