By Topic

Coordinating Secondary-User Behaviors for Inelastic Traffic Reward Maximization in Large-Scale osa Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hamdaoui, B. ; Oregon State Univ., Corvallis, OR, USA ; NoroozOliaee, M. ; Tumer, K. ; Rayes, A.

We develop efficient coordination techniques that support inelastic traffic in large-scale distributed dynamic spectrum access (DSA) networks. By means of any learning algorithm, the proposed techniques enable DSA users to locate and exploit spectrum opportunities effectively, thereby increasing their achieved throughput (or “rewards” to be more general). Basically, learning algorithms allow DSA users to learn by interacting with the environment, and use their acquired knowledge to select the proper actions that maximize their own objectives, thereby “hopefully” maximizing their long-term cumulative received reward. However, when DSA users' objectives are not carefully coordinated, learning algorithms can lead to poor overall system performance, resulting in lesser per-user average achieved rewards. In this paper, we derive efficient objective functions that DSA users can aim to maximize, and that by doing so, users' collective behavior also leads to good overall system performance, thus maximizing each user's long-term cumulative received rewards. We show that the proposed techniques are: (i) efficient by enabling users to achieve high rewards, (ii) scalable by performing well in systems with a small as well as a large number of users, (iii) learnable by allowing users to reach up high rewards very quickly, and (iv) distributive by being implementable in a decentralized manner.

Published in:

Network and Service Management, IEEE Transactions on  (Volume:9 ,  Issue: 4 )