Cart (Loading....) | Create Account
Close category search window
 

Electromechanical properties of freestanding graphene functionalized with tin oxide (SnO2) nanoparticles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Dong, L. ; College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China ; Hansen, J. ; Xu, P. ; Ackerman, M.L.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4745780 

Freestanding graphene membranes were functionalized with SnO2 nanoparticles. A detailed procedure providing uniform coverage and chemical synthesis is presented. Elemental composition was determined using scanning electron microscopy combined with energy dispersive x-ray analysis. A technique called electrostatic-manipulation scanning tunneling microscopy was used to probe the electromechanical properties of functionalized freestanding graphene samples. We found ten times larger movement perpendicular to the plane compared to pristine freestanding graphene and propose a nanoparticle encapsulation model.

Published in:

Applied Physics Letters  (Volume:101 ,  Issue: 6 )

Date of Publication:

Aug 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.