By Topic

No reference image quality assessment based on statistical distribution of local Sub-Image-Similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Beilian Li ; Institute of Image Processing and Pattern Recognition, Xi'an Jiaotong University, China ; Xuanqin Mou

The research on no reference image quality assessment (NR IQA) is the most attractive one in the area of image quality perception. In this paper, we propose to use the statistical distribution of local Sub-Image-Similarity (SIS) measures for NR IQA model design. Here the mean and the difference properties among the local SIS measurements in different directions are synthesized into five quality labels to depict the perceptual quality property of deteriorated images. The proposed NR IQA model is developed based on the statistical distribution of quality labels over whole image, via a SVM regression. Experiments show that the proposed model performs best according to the predictive accuracy when compared to the published NR IQA models, and works stably with different parameter selections and cross database evaluations.

Published in:

Quality of Multimedia Experience (QoMEX), 2012 Fourth International Workshop on

Date of Conference:

5-7 July 2012