Cart (Loading....) | Create Account
Close category search window
 

Collaborative Multiobjective Global Routing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shojaei, H. ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin, Madison, WI, USA ; Davoodi, A. ; Basten, T.

This paper presents a collaborative procedure for multiobjective global routing. Our procedure takes multiple global routing solutions, which are generated independently (e.g., by one router that runs in different modes concurrently or by different routers running in parallel), as input. It then performs multiobjective optimization based on Pareto algebra and quickly generates multiple global routing solutions with a tradeoff between the considered objectives. The user can control the number of generated solutions and the degree of exploring the tradeoff between them by constraining the maximum allowable degradation in each objective. This paper then considers the following three multiobjective case studies: 1) minimization of interconnect power and wirelength; 2) minimization of routing congestion and wirelength; and 3) minimization of wirelength with respect to the (finite-capacity) routing resources. The maximum allowable degradation in wirelength is specified in all cases. Our multiobjective procedure runs in only a few minutes for each of the International Symposium on Physical Design 2008 benchmarks, even the unroutable ones, which imposes a tolerable overhead in the design flow. In our simulations, we demonstrate the effectiveness of our procedure using five modern academic global routers.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 7 )

Date of Publication:

July 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.