By Topic

Machine Learning-Based Method for Personalized and Cost-Effective Detection of Alzheimer's Disease

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Javier Escudero ; Signal Processing and Multimedia Communications Research Group, School of Computing and Mathematics, Plymouth University, Plymouth, U.K. ; Emmanuel Ifeachor ; John P. Zajicek ; Colin Green
more authors

Diagnosis of Alzheimer's disease (AD) is often difficult, especially early in the disease process at the stage of mild cognitive impairment (MCI). Yet, it is at this stage that treatment is most likely to be effective, so there would be great advantages in improving the diagnosis process. We describe and test a machine learning approach for personalized and cost-effective diagnosis of AD. It uses locally weighted learning to tailor a classifier model to each patient and computes the sequence of biomarkers most informative or cost-effective to diagnose patients. Using ADNI data, we classified AD versus controls and MCI patients who progressed to AD within a year, against those who did not. The approach performed similarly to considering all data at once, while significantly reducing the number (and cost) of the biomarkers needed to achieve a confident diagnosis for each patient. Thus, it may contribute to a personalized and effective detection of AD, and may prove useful in clinical settings.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:60 ,  Issue: 1 )