By Topic

Dynamic analysis of fixed-free single-walled carbon nanotube-based bio-sensors because of various viruses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Gupta ; Vibration and Noise Control Laboratory, Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee ; A. Y. Joshi ; S. C. Sharma ; S. P. Harsha

In the present study, the vibrations of the fixed-free single-walled carbon nanotube (SWCNT) with attached bacterium/virus on the tip have been investigated. To explore the suitability of the SWCNT as a bacterium/virus detector device, first the various types of virus have been taken for the study and then the resonant frequencies of fixed-free SWCNT with attachment of those viruses have been simulated. These resonant frequencies are compared with the published analytical data, and it is shown that the finite element method (FEM) simulation results are in good agreement with the analytical data. The results showed the sensitivity and suitability of the SWCNT having different length and different masses (attached at the tip SWCNT) to identify the bacterium or virus.

Published in:

IET Nanobiotechnology  (Volume:6 ,  Issue: 3 )