Cart (Loading....) | Create Account
Close category search window

Automatic Road Crack Detection and Characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oliveira, H. ; Inst. de Telecomun., Inst. Super. Tecnico, Lisbon, Portugal ; Correia, P.L.

A fully integrated system for the automatic detection and characterization of cracks in road flexible pavement surfaces, which does not require manually labeled samples, is proposed to minimize the human subjectivity resulting from traditional visual surveys. The first task addressed, i.e., crack detection, is based on a learning from samples paradigm, where a subset of the available image database is automatically selected and used for unsupervised training of the system. The system classifies nonoverlapping image blocks as either containing crack pixels or not. The second task deals with crack type characterization, for which another classification system is constructed, to characterize the detected cracks' connect components. Cracks are labeled according to the types defined in the Portuguese Distress Catalog, with each different crack present in a given image receiving the appropriate label. Moreover, a novel methodology for the assignment of crack severity levels is introduced, computing an estimate for the width of each detected crack. Experimental crack detection and characterization results are presented based on images captured during a visual road pavement surface survey over Portuguese roads, with promising results. This is shown by the quantitative evaluation methodology introduced for the evaluation of this type of system, including a comparison with human experts' manual labeling results.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )

Date of Publication:

March 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.