By Topic

Minimum Distance and Trapping Set Analysis of Protograph-Based LDPC Convolutional Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mitchell, D.G.M. ; Dept. of Electr. Eng., Univ. of Notre Dame, Notre Dame, IN, USA ; Pusane, A.E. ; Costello, D.J., Jr.

Low-density parity-check (LDPC) convolutional codes have been shown to be capable of achieving capacity-approaching performance with iterative message-passing decoding. In the first part of this paper, using asymptotic methods to obtain lower bounds on the free distance to constraint length ratio, we show that several ensembles of regular and irregular LDPC convolutional codes derived from protograph-based LDPC block codes have the property that the free distance grows linearly with respect to the constraint length, i.e., the ensembles are asymptotically good. In particular, we show that the free distance to constraint length ratio of the LDPC convolutional code ensembles exceeds the minimum distance to block length ratio of the corresponding LDPC block code ensembles. A large free distance growth rate indicates that codes drawn from the ensemble should perform well at high signal-to-noise ratios under maximum-likelihood decoding. When suboptimal decoding methods are employed, there are many factors that affect the performance of a code. Recently, it has been shown that so-called trapping sets are a significant factor affecting decoding failures of LDPC codes over the additive white Gaussian noise channel with iterative message-passing decoding. In the second part of this paper, we study the trapping sets of the asymptotically good protograph-based LDPC convolutional codes considered earlier. By extending the theory presented in part one and using similar bounding techniques, we show that the size of the smallest non-empty trapping set grows linearly with the constraint length for these ensembles.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 1 )