By Topic

Optimal Photovoltaic Array Reconfiguration to Reduce Partial Shading Losses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
El-Dein, M.Z.S. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Kazerani, M. ; Salama, M.M.A.

Partial shading of a photovoltaic array is the condition under which different modules in the array experience different irradiance levels due to shading. This difference causes mismatch between the modules, leading to undesirable effects such as reduction in generated power and hot spots. The severity of these effects can be considerably reduced by photovoltaic array reconfiguration. This paper proposes a novel mathematical formulation for the optimal reconfiguration of photovoltaic arrays to minimize partial shading losses. The paper formulates the reconfiguration problem as a mixed integer quadratic programming problem and finds the optimal solution using a branch and bound algorithm. The proposed formulation can be used for an equal or nonequal number of modules per row. Moreover, it can be used for fully reconfigurable or partially reconfigurable arrays. The improvement resulting from the reconfiguration with respect to the existing photovoltaic interconnections is demonstrated by extensive simulation results.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 1 )