By Topic

Framework for texture classification and retrieval using scale invariant feature transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tuan Do ; VTT Technical Research Centre of Finland, Espoo, Finland ; Antti Aikala ; Olli Saarela

Texture images can be characterized with key features extracted from images. In this paper, the scale invariant feature transform (hereinafter SIFT) algorithm is utilized to generate local features for texture image classification. The local features are selected as inputs for texture classification framework. For each texture category, a texton dictionary is built based on the local features. To establish the texton dictionary, an adaptive mean shift clustering algorithm is run with all local features to generate key features (called textons) for texton dictionary. The texton dictionaries among texture categories are supposed be distinctive from each other to provide a highest performance in term of classification accuracy. A framework is proposed for classifying images into corresponding categories by matching their local features with textons from the texton dictionaries. This can be done by a histogram model of “match” vectors versus texture categories. Finally, our texture image database and the Ponce texture database are used to test the proposed approach. The results indicate a potential of our proposed method based on high classification accuracies achieved. They are 100% with our testing database for both classification and retrieval and 92 % and 100% with Ponce database for classification and retrieval, respectively.

Published in:

Computer Science and Software Engineering (JCSSE), 2012 International Joint Conference on

Date of Conference:

May 30 2012-June 1 2012