By Topic

A Dielectric-Modulated Tunnel-FET-Based Biosensor for Label-Free Detection: Analytical Modeling Study and Sensitivity Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rakhi Narang ; Department of Electronic Science, University of Delhi, New Delhi, India ; K. V. Sasidhar Reddy ; Manoj Saxena ; R. S. Gupta
more authors

In this paper, an analytical model for a p-n-p-n tunnel field-effect transistor (TFET) working as a biosensor for label-free biomolecule detection purposes is developed and verified with device simulation results. The model provides a generalized solution for the device electrostatics and electrical characteristics of the p-n-p-n-TFET-based sensor and also incorporates the two important properties possessed by a biomolecule, i.e., its dielectric constant and charge. Furthermore, the sensitivity of the TFET-based biosensor has been compared with that of a conventional FET-based counterpart in terms of threshold voltage (Vth) shift, variation in the on-current (Ion) level, and Ion/Ioff ratio. It has been shown that the TFET-based sensor shows a large deviation in the current level, and thus, change in Ion can also be considered as a suitable sensing parameter. Moreover, the impacts of device parameters (channel thickness and cavity length), process variability, and process-induced damage on the sensitivity of the biosensor have also been discussed.

Published in:

IEEE Transactions on Electron Devices  (Volume:59 ,  Issue: 10 )