By Topic

Learning a Confidence Measure for Optical Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mac Aodha, O. ; Dept. of Comput. Sci., Univ. Coll. London, London, UK ; Humayun, A. ; Pollefeys, M. ; Brostow, G.J.

We present a supervised learning-based method to estimate a per-pixel confidence for optical flow vectors. Regions of low texture and pixels close to occlusion boundaries are known to be difficult for optical flow algorithms. Using a spatiotemporal feature vector, we estimate if a flow algorithm is likely to fail in a given region. Our method is not restricted to any specific class of flow algorithm and does not make any scene specific assumptions. By automatically learning this confidence, we can combine the output of several computed flow fields from different algorithms to select the best performing algorithm per pixel. Our optical flow confidence measure allows one to achieve better overall results by discarding the most troublesome pixels. We illustrate the effectiveness of our method on four different optical flow algorithms over a variety of real and synthetic sequences. For algorithm selection, we achieve the top overall results on a large test set, and at times even surpass the results of the best algorithm among the candidates.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 5 )