By Topic

NHOP: A Nested Associative Pattern for Analysis of Consensus Sequence Ensembles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chiu, David K.Y. ; University of Guelph, Guelph ; Lui, Thomas W.H.

In this research, we introduce a novel, complex associative pattern that is found to be very useful because it identifies the core associative structure from the data. We refer to it as nested high-order pattern. The pattern is more specific than associative patterns represented as multiple variables. It also generalizes sequential patterns, as the outcomes need not be contiguous. This paper outlines two search algorithms, the $(r)$-Tree and Best-$(k)$ algorithm in its detection. It was then applied to an analysis of biomolecule using the aligned sequence family of the molecule. In the SH3 protein, a model for protein-protein interaction mediator, we identify functional groups (core and binding sites) in the three-dimensional structure as well as amino acid patterns dominating certain species.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 10 )