By Topic

10.7-Gb/s Discrete Multitone Transmission Over 50-m SI-POF Based on WDM Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kruglov, R. ; Polymer Opt. Fiber Applic. Center, Univ. of Appl. Sci., Nuremberg, Germany ; Vinogradov, J. ; Ziemann, O. ; Loquai, S.
more authors

The capacity of the transmission link based on standard 1-mm core-diameter step-index plastic optical fiber (SI-POF) is strictly limited due to the strong attenuation and inter-modal dispersion. Parallel transmission of the data streams using several optical carriers might overcome the mentioned limits and allows for low-bandwidth transmitters and receivers. In this letter, we demonstrate the implementation of wavelength-division multiplexing technology with three laser diodes operating at 405, 515, and 650 nm with +7.1, +5.4, and +4 dBm fiber-coupled power. The 10.7-Gb/s data transmission based on the offline-processed discrete multitone modulation technique has been realized over 50-m SI-POF at the bit-error ratio of 10-3.

Published in:

Photonics Technology Letters, IEEE  (Volume:24 ,  Issue: 18 )