By Topic

Filter design oriented EMI prediction model for DC-fed motor drive system using double fourier integral transformation method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xuning Zhang ; Bradley Dept. of Electr. & Comput. Eng., Virginia Tech, Blacksburg, VA, USA ; Boroyevich, D. ; Mattavelli, P. ; Wang, F.

This work proposes a frequency-domain EMI prediction model for common mode (CM) and differential mode (DM) noises for the purpose of designing EMI filters before the system construction. The parameters in the model can be extracted from system detail switching model or measured from the real system. The Double Fourier Integral Transformation (DFIT) method is used to calculate the noise sources in the model. When the system topology modulation method and modulation index is fixed, the system EMI noise can be predicted from the calculation of the equivalent model. Verifications are carried out through simulation and experiment system by comparing the calculated EMI spectrums and simulated and measured EMI spectrums. Based on the proposed model, this paper also proves that the resonances in EMI noise propagation path will have a significant impact on the EMI filter design for DC fed motor drive system with long cables.

Published in:

Power Electronics and Motion Control Conference (IPEMC), 2012 7th International  (Volume:2 )

Date of Conference:

2-5 June 2012