Cart (Loading....) | Create Account
Close category search window
 

Analysis of planar E+I and ER+I transformers for low-voltage high-current DC/DC converters with focus on winding losses and leakage inductance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pittini, Riccardo ; Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark ; Zhe Zhang ; Ouyang, Ziwei ; Andersen, M.A.E.
more authors

In this paper an analysis of two planar transformers designed for high-current switching applications is presented. Typical converter application is represented by fuel and electrolyser cell converters. The transformer designs are based on E+I and ER+I planar cores while the analysis focuses on winding resistance and leakage inductances which represent the main concerns related to low-voltage high-current applications. The PCB winding design has a one to one turn ratio with no interleaving between primary and secondary windings. The main goal was to determine if ER planar core could provide a significant advantage in terms of winding losses compared to planar E cores. Results from finite element analysis highlight that low frequency winding resistance is lower for the ER core since it is dominated by the lower mean turn length however, as the AC-resistance becomes dominating the winding eddy current losses increases more in the ER core than in the E core design. Calculated and simulated leakage inductances for the analyzed cores do not show relevant differences. A laboratory prototype based on E64 planar core is used as reference. Laboratory measurements highlight that FEM analysis provides more realistic results when computing the winding AC-resistance.

Published in:

Power Electronics and Motion Control Conference (IPEMC), 2012 7th International  (Volume:1 )

Date of Conference:

2-5 June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.