By Topic

Discovering Trust Networks for the Selection of Trustworthy Service Providers in Complex Contextual Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guanfeng Liu ; Dept. of Comput., Macquarie Univ., Sydney, NSW, Australia ; Yan Wang ; Orgun, M.A. ; Huan Liu

Online Social Networks (OSNs) have provided an infrastructure for a number of emerging applications in recent years, e.g., for the recommendation of service providers, where trust is one of the most important factors for the decision-making of service consumers. In order to evaluate the trustworthiness of a service provider (i.e., the target) without any prior interaction with a service consumer (i.e., the source), the trust network from the source to the target need to be extracted firstly before performing any trust evaluation, as it contains some important intermediate participants, the trust relations between the participants, and the social context, each of which has an important influence on trust evaluation. However, the network extraction has been proved to be NP-Complete. Towards solving this challenging problem, we first propose a complex contextual social network structure which considers some social contexts, having significant influences on both social interactions and trust evaluation between participants. Then, we propose a new concept called QoTN (Quality of Trust Network) and a social context-aware trust network discovery model. Finally, we propose a Heuristic Social Context-Aware trust Network discovery algorithm (H-SCAN) by adopting the K-Best-First Search (KBFS) method and our optimization strategies. The experimental results illustrate that our proposed model and algorithm outperform the existing methods in both algorithm efficiency and the quality of the extracted trust networks.

Published in:

Web Services (ICWS), 2012 IEEE 19th International Conference on

Date of Conference:

24-29 June 2012