Cart (Loading....) | Create Account
Close category search window
 

RF burn-in of dielectric-charging characteristics of micro-electromechanical capacitive switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Molinero, D. ; Lehigh University, Bethlehem, PA 18015, USA ; Palego, C. ; Luo, X. ; Hwang, J.C.M.
more authors

We report, for the first time, the benefit of RF burn-in at power levels significantly higher than the nominal handling capacity of micro-electromechanical capacitive switches. The benefit appears to be permanent, so that, after burn-in, the switches remain less vulnerable to dielectric charging and, presumably, more reliable. It was speculated that high RF power permanently changed the bond configuration of the silicon-dioxide dielectric, which prevented charge injection under DC bias. Obviously, more detailed study is needed to elucidate the detailed burn-in mechanism. However, this initial result is very encouraging and can facilitate the application of these switches in many RF systems.

Published in:

Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International

Date of Conference:

17-22 June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.