Cart (Loading....) | Create Account
Close category search window

Practical system for the direct measurement of magneto-caloric effect by micro-thermocouples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kamarad, J. ; Institute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic ; Kastil, J. ; Arnold, Z.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A system for direct measurements of the magneto-caloric effect (MCE) exploits a rapid transport of a sample into or from magnetic field in permanent Halbach-type (1 T) or superconducting (4.7 T) magnets. Time dependence of induced changes of the sample temperature, ΔT(t), is detected directly by the differential Cu-Constantan-Cu micro-thermocouples with time steps of 300 ms. A sample placed inside an evacuated simple LN2 cryostat is either totally isolated (adiabatic conditions) or partly connected with the copper sample holder (non-adiabatic conditions). The last arrangement (a model of the Brayton cycle) is used to simulate an application of MCE in refrigeration techniques. The relations describing ΔT(t) that allow an analysis of MCE of the studied materials are based on the general cooling law. The effect of the first-order magnetic transition on MCE of selected sample is also demonstrated by non-standard ΔT(t) curves measured in the last mentioned experimental arrangements.

Published in:

Review of Scientific Instruments  (Volume:83 ,  Issue: 8 )

Date of Publication:

Aug 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.