Cart (Loading....) | Create Account
Close category search window
 

Finite-Element Eigenvalue Analysis of Propagating and Evanescent Modes in 3-D Periodic Structures Using Model-Order Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bostani, A. ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada ; Webb, J.P.

Eigenvalue analysis of a periodic structure by the finite-element method gives its Floquet propagation constant at a given frequency. Using this method directly to find the dispersion curve is computationally expensive, particularly in 3-D, because a large matrix eigenproblem must be solved at each frequency. The cost can be lowered by applying model-order reduction. A full-size eigenproblem at one frequency provides the information needed to build a much smaller matrix system that is sufficient for finding the dispersion over a frequency range. By controlling the frequency step-size and estimating eigenvalue errors, it is possible to compute dispersion over an arbitrary frequency range in an automatic way at a cost that is much lower than using the direct approach. Results are presented for a number of 3-D structures with rectangular cells: a triply periodic metal cube, three doubly-periodic planar structures, and a singly-periodic iris-loaded waveguide. Comparisons with previously published results demonstrate the accuracy of the method. The computational cost for these cases is at least an order of magnitude lower than the cost of solving the full eigenvalue problem at each frequency.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 9 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.