By Topic

The Value of Feedback in Decentralized Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wee Peng Tay ; Nanyang Technol. Univ., Singapore, Singapore

We consider the decentralized binary hypothesis testing problem in networks with feedback, where some or all of the sensors have access to compressed summaries of other sensors' observations. We study certain two-message feedback architectures, in which every sensor sends two messages to a fusion center, with the second message based on full or partial knowledge of the first messages of the other sensors. We also study one-message feedback architectures, in which each sensor sends one message to a fusion center, with a group of sensors having full or partial knowledge of the messages from the sensors not in that group. Under either a Neyman-Pearson or a Bayesian formulation, we show that the asymptotically optimal (in the limit of a large number of sensors) detection performance (as quantified by error exponents) does not benefit from the feedback messages, if the fusion center remembers all sensor messages. However, feedback can improve the Bayesian detection performance in the one-message feedback architecture if the fusion center has limited memory; for that case, we determine the corresponding optimal error exponents.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 12 )